
Primer: Markov chains

Lecture 7.2

by Marina Barsky

See sample code in markov.py

https://drive.google.com/file/d/1UoGki64-Asn-B88bHtOIw2z9py5nZaTW/view?usp=sharing


Traffic officer assignment

• One traffic officer is assigned to 
control intersections: 1 - 8

• He is instructed to remain at a given 
intersection for an hour, and then 
either remain at the same 
intersection, or move to a neighboring 
intersection

• To avoid establishing a pattern, he is 
instructed to choose his new 
intersection at random, with each 
possible move - equally likely

1 2

3 4 5

6 7 8

For example, if he starts at intersection 5, 
his next intersection could be 2,4,5,8 – all 
with equal probability ¼ 

Every day he starts at the location where he stopped before



Markov chains

• The system can be in a finite number of states

• The transition from state to state is not predetermined, but 
rather specified in terms of probabilities which depend on 
the previous history of the system. Such a system is called a 
stochastic system

• If the transition probabilities depend only on the immediate 
history of the system – for example the state at current 
observation depends only on the state in the preceding 
observation – then the process of transitions from state to 
state is called a Markov process or a Markov chain



Markov model for traffic officer

Old intersection

1 2 3 4 5 6 7 8

1 1/3 1/3 0 1/5 0 0 0 0

2 1/3 1/3 0 0 1/4 0 0 0

3 0 0 1/3 1/5 0 1/3 0 0

4 1/3 0 1/3 1/5 1/4 0 1/4 0

5 0 1/3 0 1/5 1/4 0 0 1/3

6 0 0 1/3 0 0 1/3 1/4 0

7 0 0 0 1/5 0 1/3 1/4 1/3

8 0 0 0 0 1/4 0 1/4 1/3
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Probabilities of moving from old to new



Markov models: terminology

Old intersection

1 2 3 4 5 6 7 8

1 1/3 1/3 0 1/5 0 0 0 0

2 1/3 1/3 0 0 1/4 0 0 0

3 0 0 1/3 1/5 0 1/3 0 0

4 1/3 0 1/3 1/5 1/4 0 1/4 0

5 0 1/3 0 1/5 1/4 0 0 1/3

6 0 0 1/3 0 0 1/3 1/4 0

7 0 0 0 1/5 0 1/3 1/4 1/3

8 0 0 0 0 1/4 0 1/4 1/3
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• States: intersections 1 – 8
• Transition probability: probability of moving from 

a given state to another state
• Transition matrix: any square matrix with non-

negative entries where every column sums up to 1

Probability vector for state 8



Markov model: theorem

Old intersection

1 2 3 4 5 6 7 8

1 1/3 1/3 0 1/5 0 0 0 0

2 1/3 1/3 0 0 1/4 0 0 0

3 0 0 1/3 1/5 0 1/3 0 0

4 1/3 0 1/3 1/5 1/4 0 1/4 0

5 0 1/3 0 1/5 1/4 0 0 1/3

6 0 0 1/3 0 0 1/3 1/4 0

7 0 0 0 1/5 0 1/3 1/4 1/3

8 0 0 0 0 1/4 0 1/4 1/3
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If P is the transition matrix of a Markov 
process, and x(t) is a probability vector for 
state in time t, then the probability vector 
x(t+1) = P*x(t)

x(1) = P*x(0)
x(2) = P*x(1) = P2*x(0)
x(3) = P*x(2) = P3*x(0)
…
x(n) = P*x(n-1) = Pn*x(0)

We start with vector: x(0) = [0 0 0 0 0 1 0 0 0]



The probabilities converge with time

• If the officer begins at intersection 5, his probable locations hour-by-
hour are given in the table

• The probability vectors approach a fixed vector as t increases

• All the values after 22 hours will stay the same up to 3 decimal places

t 0 1 2 3 4 5 10 15 20 22

1 0 .000 .133 .116 .130 .123 .113 .109 .108 .107

2 0 .250 .146 .163 .140 .138 .115 .109 .108 .107

3 0 .000 .005 .039 .067 .073 .100 .106 .107 .107

4 0 .250 .113 .187 .162 .178 .178 .179 .179 .179

5 1 .250 .279 .190 .190 .168 .149 .144 .143 .143

6 0 .000 .000 .050 .056 .074 .099 .105 .107 .107

7 0 .000 .133 .104 .131 .125 .138 .141 .143 .143

8 0 .250 .146 .152 .124 .121 .108 .107 .107 .107

Check markov.py



Example: Migration

• A country is divided into 3 demographic regions. 

• It is determined that each year:
• Of the residents of region 1:

• 5% move to region 2 and 5% move to region 3
• Of the residents of region 2: 

• 15% move to region 1 and 10% move to region 3
• Of the residents of region 3: 

• 10% move to region 1 and 5% move to region 2

• What percentage of the country resides in each region after a long 
period of time?

• Does it depend on the initial vector of proportion of residents in each 
region?



Markov models and sequences
Generating sequences from Markov models

See sample code in casino.py

https://drive.google.com/file/d/1aTbb8kWnDOAcrrzzT_6KsLc_1hF9SMCJ/view?usp=sharing


The honest and the dishonest casino

1/6 1/10

1/2

Choose L with P(L) = 0.01

P(F) = 0.99 P(L) = 0.01

Prior probabilities – before we see any evidence (sequence)

We assume that: 



Bayes theorem and Markov models

• Pick a die at random - and roll

• We get 3 consecutive sixes: ‘666’

• Is the die loaded? What is the probability?

• We want to know P(L|3 sixes)

• From Bayes theorem:

P(L|3 sixes) = P(3 sixes|L)*P(L)/P(3 sixes)

P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L) *P(L) = 0.0058

• P (L|3 sixes) = ( 0.5*0.5*0.5 * 0.01) /0.0058 = 0.215

• P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

The sequence was generated either by fair or by loaded die

Not enough evidence to conclude that the die was Loaded



What are the odds?

• P (W1|evidence) = P(evidence|W1)*P(W1)/P(evidence)

• P (W2|evidence) = P(evidence|W2)*P(W2)/P(evidence)

• To compare P (W1|evidence)  vs P (W2|evidence) :

P (W1|evidence) / P (W2|evidence)

• Or to avoid underflow:

log [P (W1|evidence) / P (W2|evidence)]

• Log odds ratio = log  [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W2)]

• If > 0 – first is more likely, if < 0 – second is more likely



If two models are equally likely, we can use the 
conditional  probabilities for discrimination

We can just compare P(M | L) and P(M | F)

L

F

Sequence M



We can use conditional probabilities for
discrimination

F L

1 0.17 0.10

2 0.17 0.10

3 0.17 0.10

4 0.17 0.10

5 0.17 0.10

6 0.17 0.50

P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10-4

P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10-5

How confident we are that this sequence was produced by a loaded die?  P(M and 

model L)/ P(M and model F)=25.89

Or log [P(M I model L)/ P(M | F)]=1.4

OR

L

F

M

Log-odds ratio



The occasionally dishonest casino

P=1/6 P=1/10

P=1/2

P=1/6

P=3/5



Sequence generated by a model of an 
occasionally dishonest casino
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