Primer: Markov chains

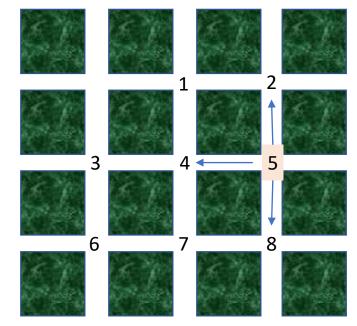
Lecture 7.2

by Marina Barsky

See sample code in *markov.py*

Traffic officer assignment

- One traffic officer is assigned to control intersections: 1 - 8
- He is instructed to remain at a given intersection for an hour, and then either remain at the same intersection, or move to a neighboring intersection
- To avoid establishing a pattern, he is instructed to choose his new intersection at random, with each possible move - equally likely



For example, if he starts at intersection 5, his next intersection could be 2,4,5,8 - all with equal probability $\frac{1}{4}$

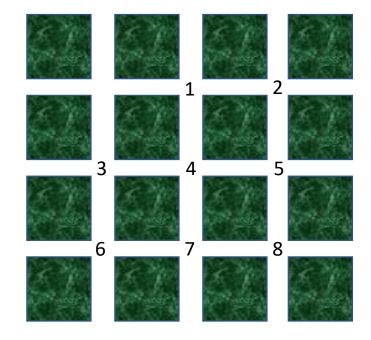
Every day he starts at the location where he stopped before

Markov chains

- The system can be in a finite number of states
- The transition from state to state is not predetermined, but rather specified in terms of *probabilities* which depend on the previous history of the system. Such a system is called a *stochastic* system
- If the transition probabilities depend only on the immediate history of the system – for example the state at current observation depends only on the state in the preceding observation – then the process of transitions from state to state is called a Markov process or a Markov chain

Markov model for traffic officer

	Old intersection									
		1	2	3	4	5	6	7	8	
	1	1/3	1/3	0	1/5	0	0	0	0	
	2	1/3	1/3	0	0	1/4	0	0	0	
tion	3	0	0	1/3	1/5	0	1/3	0	0	
rsect	4	1/3	0	1/3	1/5	1/4	0	1/4	0	
New intersection	5	0	1/3	0	1/5	1/4	0	0	1/3	
	6	0	0	1/3	0	0	1/3	1/4	0	
	7	0	0	0	1/5	0	1/3	1/4	1/3	
	8	0	0	0	0	1/4	0	1/4	1/3	

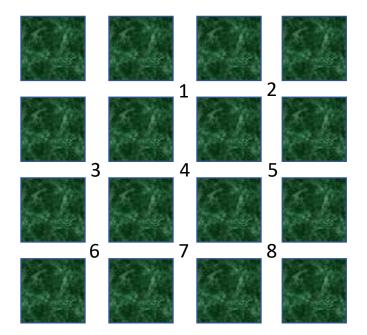


Probabilities of moving from old to new

Markov models: terminology

- *States*: intersections 1 8
- *Transition probability*: probability of moving from a given state to another state
- *Transition matrix*: any square matrix with nonnegative entries where every column sums up to 1

	Old intersection									
		1	2	3	4	5	6	7	8	
	1	1/3	1/3	0	1/5	0	0	0	0	
	2	1/3	1/3	0	0	1/4	0	0	0	
ion	3	0	0	1/3	1/5	0	1/3	0	0	
rsect	4	1/3	0	1/3	1/5	1/4	0	1/4	0	
intel	5	0	1/3	0	1/5	1/4	0	0	1/3	
New intersection	6	0	0	1/3	0	0	1/3	1/4	0	
	7	0	0	0	1/5	0	1/3	1/4	1/3	
	8	0	0	0	0	1/4	0	1/4	1/3	



Probability vector for state 8

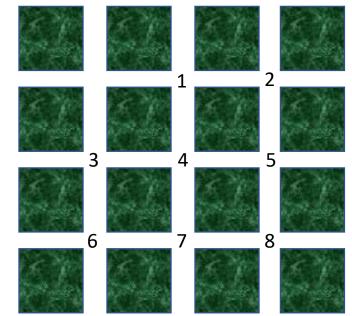
Markov model: theorem

If **P** is the transition matrix of a Markov process, and **x**(t) is a probability vector for state in time t, then the probability vector $\mathbf{x}(t+1) = \mathbf{P}^*\mathbf{x}(t)$

Intersection 5

We start with vector: $\mathbf{x}(0) = [0\ 0\ 0\ 0\ 0\ 1\ 0\ 0]$

	Old intersection										
New intersection		1	2	3	4	5	6	7	8		
	1	1/3	1/3	0	1/5	0	0	0	0		
	2	1/3	1/3	0	0	1/4	0	0	0		
	3	0	0	1/3	1/5	0	1/3	0	0		
	4	1/3	0	1/3	1/5	1/4	0	1/4	0		
	5	0	1/3	0	1/5	1/4	0	0	1/3		
	6	0	0	1/3	0	0	1/3	1/4	0		
	7	0	0	0	1/5	0	1/3	1/4	1/3		
	8	0	0	0	0	1/4	0	1/4	1/3		



 $\boldsymbol{x}(n) = \boldsymbol{P}^*\boldsymbol{x}(n-1) = \boldsymbol{P}^n^*\boldsymbol{x}(0)$

The probabilities converge with time

- If the officer begins at intersection 5, his probable locations hour-byhour are given in the table
- The probability vectors approach a fixed vector as t increases
- All the values after 22 hours will stay the same up to 3 decimal places

t	0	1	2	3	4	5	10	15	20	22
1	0	.000	.133	.116	.130	.123	.113	.109	.108	.107
2	0	.250	.146	.163	.140	.138	.115	.109	.108	.107
3	0	.000	.005	.039	.067	.073	.100	.106	.107	.107
4	0	.250	.113	.187	.162	.178	.178	.179	.179	.179
5	1	.250	.279	.190	.190	.168	.149	.144	.143	.143
6	0	.000	.000	.050	.056	.074	.099	.105	.107	.107
7	0	.000	.133	.104	.131	.125	.138	.141	.143	.143
8	0	.250	.146	.152	.124	.121	.108	.107	.107	.107

Check markov.py

Example: Migration

- A country is divided into 3 demographic regions.
- It is determined that each year:
 - Of the residents of region 1:
 - 5% move to region 2 and 5% move to region 3
 - Of the residents of region 2:
 - 15% move to region 1 and 10% move to region 3
 - Of the residents of region 3:
 - 10% move to region 1 and 5% move to region 2
- What percentage of the country resides in each region after a long period of time?
- Does it depend on the initial vector of proportion of residents in each region?

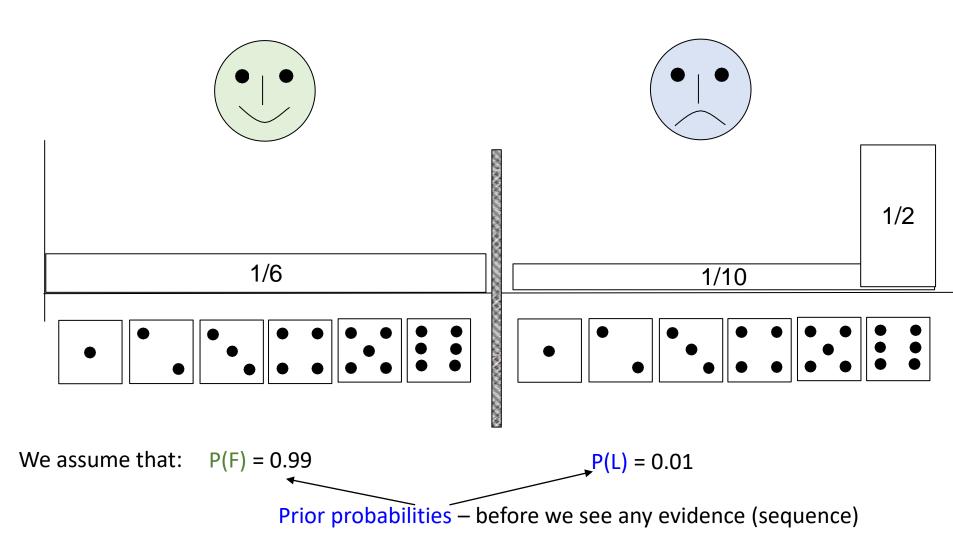
Markov models and sequences

Generating sequences from Markov models

See sample code in *casino.py*

The honest and the dishonest casino

Choose L with P(L) = 0.01



Bayes theorem and Markov models

- Pick a die at random and roll
- We get 3 consecutive sixes: '666'
- Is the die loaded? What is the probability?
- We want to know P(L|3 sixes)
- From Bayes theorem:

```
P(L|3 \text{ sixes}) = P(3 \text{ sixes}|L)*P(L)/P(3 \text{ sixes})
```

P(F|3 sixes) = P(3 sixes|F)*P(F)/P(3 sixes)

The sequence was generated either by fair or by loaded die P(3 sixes) = P(3 sixes|F)*P(F) + P(3 sixes|L)*P(L) = 0.0058

- P (L|3 sixes) = (0.5*0.5*0.5 * 0.01) /0.0058 = 0.215
- P(F|3 sixes) = (1/6)*(1/6)*(1/6)*0.99 / 0.0058 = 0.785

Not enough evidence to conclude that the die was Loaded

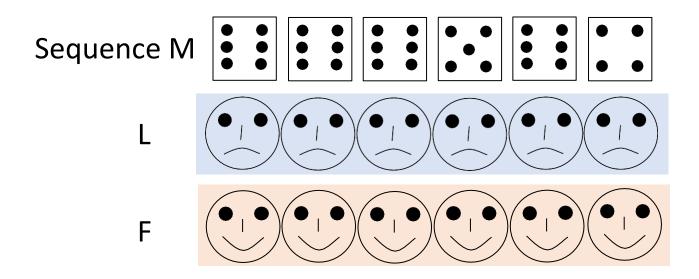
What are the odds?

- P (W1|evidence) = P(evidence|W1)*P(W1)/P(evidence)
- P (W2|evidence) = P(evidence|W2)*P(W2)/P(evidence)
- To compare P (W1|evidence) vs P (W2|evidence) :
- P (W1|evidence) / P (W2|evidence)
- Or to avoid underflow:

log [P (W1|evidence) / P (W2|evidence)]

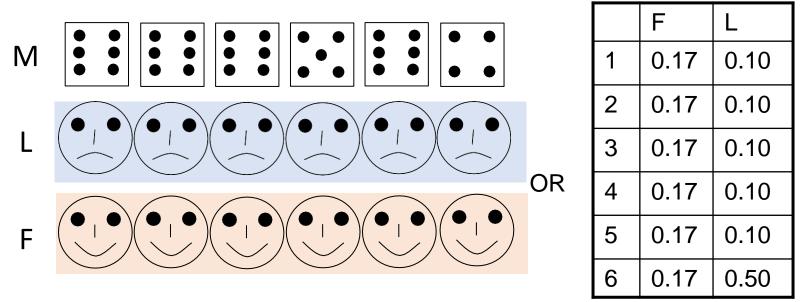
- Log odds ratio = log [P(evidence|W1)*P(W1)/ P(evidence|W2)*P(W2)]
- If > 0 first is more likely, if < 0 second is more likely

If two models **are** <u>equally likely</u>, we can use the conditional probabilities for discrimination



We can just compare P(M | L) and P(M | F)

We can use conditional probabilities for discrimination

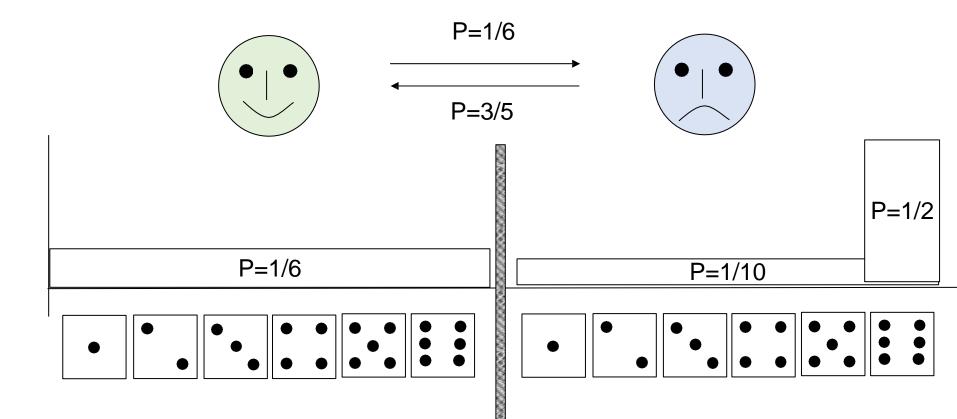


P(M | L)=0.5*0.5*0.5*0.1*0.5*0.1=0.000625 = 6.25*10⁻⁴

P(M | F)=0.17*0.17*0.17*0.17*0.17*0.17=0.000024 = 2.4 *10⁻⁵

How confident we are that this sequence was produced by a loaded die? P(M and model L)/ P(M and model F)=25.89 Or log [P(M I model L)/ P(M | F)]=1.4 Log-odds ratio

The occasionally dishonest casino



Sequence generated by a model of an occasionally dishonest casino

