# Primer: Markov chains 

Lecture 7.2
by Marina Barsky

## Traffic officer assignment

- One traffic officer is assigned to control intersections: 1-8
- He is instructed to remain at a given intersection for an hour, and then either remain at the same intersection, or move to a neighboring intersection
- To avoid establishing a pattern, he is instructed to choose his new intersection at random, with each possible move - equally likely


For example, if he starts at intersection 5 , his next intersection could be 2,4,5,8 - all with equal probability $1 / 4$

Every day he starts at the location where he stopped before

## Markov chains

- The system can be in a finite number of states
- The transition from state to state is not predetermined, but rather specified in terms of probabilities which depend on the previous history of the system. Such a system is called a stochastic system
- If the transition probabilities depend only on the immediate history of the system - for example the state at current observation depends only on the state in the preceding observation - then the process of transitions from state to state is called a Markov process or a Markov chain


## Markov model for traffic officer

|  | Old intersection |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 1 | 1/3 | 1/3 | 0 | 1/5 | 0 | 0 | 0 | 0 |
|  | 2 | 1/3 | 1/3 | 0 | 0 | 1/4 | 0 | 0 | 0 |
|  | 3 | 0 | 0 | 1/3 | 1/5 | 0 | 1/3 | 0 | 0 |
|  | 4 | 1/3 | 0 | 1/3 | 1/5 | 1/4 | 0 | 1/4 | 0 |
|  | 5 | 0 | 1/3 | 0 | 1/5 | 1/4 | 0 | 0 | 1/3 |
|  | 6 | 0 | 0 | 1/3 | 0 | 0 | 1/3 | 1/4 | 0 |
|  | 7 | 0 | 0 | 0 | 1/5 | 0 | 1/3 | 1/4 | 1/3 |
|  | 8 | 0 | 0 | 0 | 0 | 1/4 | 0 | 1/4 | 1/3 |



Probabilities of moving from old to new

## Markov models: terminology

- States: intersections 1-8
- Transition probability: probability of moving from a given state to another state
- Transition matrix: any square matrix with nonnegative entries where every column sums up to 1

|  | Old intersection |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 1 | 1/3 | 1/3 | 0 | 1/5 | 0 | 0 | 0 | 0 |
|  | 2 | 1/3 | 1/3 | 0 | 0 | 1/4 | 0 | 0 | 0 |
|  | 3 | 0 | 0 | 1/3 | 1/5 | 0 | 1/3 | 0 | 0 |
|  | 4 | 1/3 | 0 | 1/3 | 1/5 | 1/4 | 0 | 1/4 | 0 |
|  | 5 | 0 | 1/3 | 0 | 1/5 | 1/4 | 0 | 0 | 1/3 |
|  | 6 | 0 | 0 | 1/3 | 0 | 0 | 1/3 | 1/4 | 0 |
|  | 7 | 0 | 0 | 0 | 1/5 | 0 | 1/3 | 1/4 | 1/3 |
|  | 8 | 0 | 0 | 0 | 0 | 1/4 | 0 | 1/4 | 1/3 |



1
4


8


Probability vector for state 8

## Markov model: theorem

If $\boldsymbol{P}$ is the transition matrix of a Markov process, and $\boldsymbol{x}(t)$ is a probability vector for state in time $t$, then the probability vector $\boldsymbol{x}(t+1)=\boldsymbol{P}^{*} \boldsymbol{x}(t)$

We start with vector: $\mathbf{x}(0)=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 1 & 0\end{array} 000\right]$

|  | Old intersection |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|  | 1 | 1/3 | 1/3 | 0 | 1/5 | 0 | 0 | 0 | 0 |
|  | 2 | 1/3 | 1/3 | 0 | 0 | 1/4 | 0 | 0 | 0 |
|  | 3 | 0 | 0 | 1/3 | 1/5 | 0 | 1/3 | 0 | 0 |
|  | 4 | 1/3 | 0 | 1/3 | 1/5 | 1/4 | 0 | 1/4 | 0 |
|  | 5 | 0 | 1/3 | 0 | 1/5 | 1/4 | 0 | 0 | 1/3 |
|  | 6 | 0 | 0 | 1/3 | 0 | 0 | 1/3 | 1/4 | 0 |
|  | 7 | 0 | 0 | 0 | 1/5 | 0 | 1/3 | 1/4 | 1/3 |
|  | 8 | 0 | 0 | 0 | 0 | 1/4 | 0 | 1/4 | 1/3 |

## The probabilities converge with time

- If the officer begins at intersection 5 , his probable locations hour-byhour are given in the table
- The probability vectors approach a fixed vector as $t$ increases
- All the values after 22 hours will stay the same up to 3 decimal places

| t | 0 | 1 | 2 | 3 | 4 | 5 | 10 | 15 | 20 | 22 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | .000 | .133 | .116 | .130 | .123 | .113 | .109 | .108 | .107 |
| 2 | 0 | .250 | .146 | .163 | .140 | .138 | .115 | .109 | .108 | .107 |
| 3 | 0 | .000 | .005 | .039 | .067 | .073 | .100 | .106 | .107 | .107 |
| 4 | 0 | .250 | .113 | .187 | .162 | .178 | .178 | .179 | .179 | .179 |
| 5 | 1 | .250 | .279 | .190 | .190 | .168 | .149 | .144 | .143 | .143 |
| 6 | 0 | .000 | .000 | .050 | .056 | .074 | .099 | .105 | .107 | .107 |
| 7 | 0 | .000 | .133 | .104 | .131 | .125 | .138 | .141 | .143 | .143 |
| 8 | 0 | .250 | .146 | .152 | .124 | .121 | .108 | .107 | .107 | .107 |

Check markov.py

## Example: Migration

- A country is divided into 3 demographic regions.
- It is determined that each year:
- Of the residents of region 1 :
- 5\% move to region 2 and 5\% move to region 3
- Of the residents of region 2:
- $15 \%$ move to region 1 and $10 \%$ move to region 3
- Of the residents of region 3:
- $10 \%$ move to region 1 and 5\% move to region 2
- What percentage of the country resides in each region after a long period of time?
- Does it depend on the initial vector of proportion of residents in each region?


# Markov models and sequences 

Generating sequences from Markov models

## The honest and the dishonest casino

Choose $L$ with $P(L)=0.01$


We assume that: $\quad P(F)=0.99$
Prior probabilities - before we see any evidence (sequence)

## Bayes theorem and Markov models

- Pick a die at random - and roll
- We get 3 consecutive sixes: '666'
- Is the die loaded? What is the probability?
- We want to know $\mathrm{P}(\mathrm{L} \mid 3$ sixes)
- From Bayes theorem:

```
P(L|3 sixes) = P(3 sixes |L)*P(L)/P(3 sixes)
P(F|3 sixes) = P(3 sixes |F)*P(F)/P(3 sixes)
```

The sequence was generated either by fair or by loaded die $P(3$ sixes $)=P(3$ sixes $\mid F) * P(F)+P(3$ sixes $\mid L) * P(L)=0.0058$

- $P(L \mid 3$ sixes $)=\left(0.5^{*} 0.5^{*} 0.5^{*} 0.01\right) / 0.0058=0.215$
- $P(F \mid 3$ sixes $)=(1 / 6)^{*}(1 / 6)^{*}(1 / 6)^{*} 0.99 / 0.0058=0.785$

Not enough evidence to conclude that the die was Loaded

## What are the odds?

- $P(W 1 \mid$ evidence $)=P($ evidence $\mid W 1) * P(W 1) / P($ evidence $)$
- $P(W 2 \mid$ evidence $)=P(\text { evidence } \mid W 2)^{*} P(W 2) / P($ evidence $)$
- To compare P (W1|evidence) vs P (W2|evidence) :

P (W1|evidence) / P (W2 |evidence)

- Or to avoid underflow:
$\log [P(W 1 \mid$ evidence) / P (W2|evidence)]
- Log odds ratio $=\log [\mathrm{P}($ evidence $\mid \mathrm{W} 1) * \mathrm{P}(\mathrm{W} 1) / \mathrm{P}($ evidence $\mid \mathrm{W} 2) * \mathrm{P}(\mathrm{W} 2)]$
- If >0 - first is more likely, if < 0 - second is more likely

If two models are equally likely, we can use the conditional probabilities for discrimination


We can just compare $P(M \mid L)$ and $P(M \mid F)$

We can use conditional probabilities for discrimination

$P(M \mid L)=0.5 * 0.5 * 0.5 * 0.1 * 0.5 * 0.1=0.000625=6.25 * 10^{-4}$
$P(M \mid F)=0.17 * 0.17 * 0.17 * 0.17 * 0.17 * 0.17=0.000024=2.4 * 10^{-5}$

How confident we are that this sequence was produced by a loaded die? $P(M$ and model L)/ P(M and model F)=25.89 Or $\log [P(M \mid$ model $L) / P(M \mid F)]=1.4$

## The occasionally dishonest casino



Sequence generated by a model of an occasionally dishonest casino


